本篇文章给大家谈谈 上海中考数学经常考的压轴题类型是什么 ,以及 急求2011各地数学中考压轴题题目 对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享 上海中考数学经常考的压轴题类型是什么 的知识,其中也会对 急求2011各地数学中考压轴题题目 进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
压轴题一般为抛物线和相似三角形结合,倒数第二题为圆,然后会出现概率题,多为画树状图或列表。有时会出现关于式子的化简或计算。选择填空会出现一个找规律的,较难的题。就如同你们平时做的一样
中考数学压轴题大概可以分为十大类型:动点、函数、三角形存在性、四边形存在性等,你可以百度“众享在线课程”,那个里面有十大类型压轴题目以及详细解答的方式。
一般分为新型函数,或者是二次函数和圆,有些函数,需要用到高中的知识才能求解,一般能都会做的人不多,二次函数和几何混在一起,对于初中生就难了,对于高中生来说,属于基础题
解答时要保证思路的清晰与开阔,前面的一:二次函数与图形的综合题、动点问题。中考压轴题主要的形式有,如分类讨论、是计算问题,图形与函数、是知识综合运用的问题,压轴题都是综合性问题,解答也可能错误1
你好,我是精锐教育庆春路中心的屠老师,中考数学压轴题型具体可以分为十大类型:图形变换,动点类,函数类,面积类,三角形存在性问题,四边形存在性问题,定值类,操作探究类,由动点产生的线段和差,与圆有关的问题。1、
从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点
动态几何 从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形
上海中考数学经常考的压轴题类型是什么
1、以坐标系为桥梁,运用数形结合思想 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些
正向思维是最常用的方式 也就是审题之后顺着题目要求,从前到后一点点求证,这是证明题的基本方法,中等难度题目、简单难度题目中较多使用的就是这种方法。 逆向思维,就是与正向思维相反,从求证入手,要想做到这样的结果,
解数学压轴题可分为五个步骤:1.认真默读题目,全面审视题目的所有条件和答题要求,注意挖掘隐蔽的条件和内在联系,理解好题意;2.利用重要数学思想探究解题思路;3.选择好解题的 方法 正确解答;4.做好检验工作,完善解题
过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。4 压轴题技巧 纵观全国各地的中考数学试卷,数学综合题
中考数学压轴题思维方法
解:这最后一问应该分两种情况.1)当点P在X轴上方CH左侧抛物线上时:取点H关于AC的对称点E,连接CE,EA.连接EH交AC于G,则AC垂直平分EH.AH=2,CH=4,则AC=2√5.由面积关系知:AC*GH=AH*CH,2√5*GH=2*4,GH=4/
对的。直接由两个45度角入手证明ABEH是圆内接四边形得∠EHN=∠ABC=90°证明垂直就行了。
x^2-4x+4=0,解得x1=x2=2。故AP长为2
设AP=x, 则DP=5-x 可得关于x的一个方程为:2/(5-x)=x/2 可得x1=1 x2=4 所以AP的值为1或4 (2)①容易得△APB∽△CEQ 所以 AB/CE=AP/CQ ①又因为 CE/DP=QC/QD(这个可以推出CE=CQ•DP/
2001年上海数学中考压轴题最后一问求解
已知AB所在的抛物线解析式为 y=-1/4x^+8,BC所在的抛物线解析式为 y=1/4(x-8)^,且已知B(m,4)。(1)设P(x,y)是山坡线AB上任意一点,用y表示x,并求点B的坐标;(2)从山顶开始、沿迎面山坡往山下
三角形AEK相似三角形ABO AK/AO=EK/BO EK=(15-3h1)/5 (自己代入整理)EF=2(15-3h1)/5 所以蝶形面积EF×OK=2(15-3h1)×h1/5=﹣6h1²/5+6h1 求这个二次函数的最大值就行了。第二问:当OH
故不符题意. 3分当 为底时,过点 作 的平行线,交双曲线于点 ,过点 分别作 轴, 轴的平行线,交于点 .由于,设 ,则,,由点,得点 .因此,解之得 ( 舍去),因此点 .此时,与 的长度不等,故四边形 是梯形. 5分如图2,当
16.(2011年浙江省绍兴市)将一矩形纸片 放在平面直角坐标系中, ,, .动点 从点 出发以每秒1个单位长的速度沿 向终点 运动,运动 秒时,动点 从点 出发以相等的速度沿 向终点 运动.当其中一点到达终点时,另一点也停止运动.设点 的
3、∠AHM=45° (这一点套用了第二题结论,可以看出∠AHM=∠BAC,这点不过多解释了)这点非常有用!4、过A做AZ⊥BM于点Z(则Z在BM延长线上).利用信息3知△AZH为等腰Rt△.5、由于AZ // CH 且 M为AC中点,则M
2011重庆数学中考试卷:最后一题的第二问:按照等边△EFG和矩形ABCD重叠部分的图形特点,分为0≤t<1,1≤t<3,3≤t<4,4≤t<6四种情况,分别写出函数关系式
(2)若某函数是反比例函数y= (k>0),它的图像的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图像上,求m的值及反比例函数的解析式;(3)若某函数是二次函数y=ax 2+c( ≠0),它的图像的伴侣正方形为ABCD,C、D中的一个
急求2011各地数学中考压轴题题目
语文、数学、英语考80分以上算正常,物理考70分以上算正常,化学考70分以上算正常,道法考15分以上算正常,跨学科尽量得分。上海初三一模时间 初三一模的意义 一模考试作为中考考前最重要的一次考试,命题形式和特点很大
选择题是12个,每个是5分,填空题6个,每个5分,解答题是5个,每个12分,总分150分。上海中考的科目有:语文、数学、外语(英语)、物理、化学、生物、政治、历史、地理、音乐、美术、体育、思想品德等十三科。
数学压轴题很难说清楚的,因为我碰到过几次,有时压轴题最难的一问分值反而最少,14分的题,最难的一问只占2分的我也见过了,不过不用担心,中考的数学压轴题得分其实不难,难就难在拿满分.加油吧!lucky you and me!
中考数学压轴题没化简的话会扣三分到四分左右。
10分。根据上海中考数学真题得知,第22道题分值为10分。试卷在结构、题型、题量等方面保持稳定。试卷总体难度中等偏上,突出对基础知识、基本技能和基本数学思想方法的考查,同时注重对分析问题、解决问题能力的考查。部分试题有
上海市中考考试科目及相应分数如下:1、语数外各150 分,其中英语分为笔试(含听力25分)140分+听说测试10分;2、理化综合测试150分,分为物理70分+化学50分+实验操作15分+跨学科案例分析15分;3、道德与法治和历史各60
中考数学压轴题一般是三问,十分左右。一、二问比较简单,五至六分。第三问就难了,不过分值不大,四到五分左右。解题思路和答案是必须要有,中间的计算过程可省略。压轴题一般指在数学试卷最后面出现的大题目。这类题型
上海中考压轴题数学多少分
如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C 从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.
(1)请用含t的代数式分别表示出点C与点P的坐标;
(2)以点C为圆心、1/2 t(二分之一 t )个单位长度为半径的圆C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.
①当与射线DE有公共点时,求t的取值范围;
②当△PAB为等腰三角形时,求t的值.
问题补充:
1.(2008年四川省宜宾市)
已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1) 求该抛物线的解析式;
(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
(3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为 )
2. (08浙江衢州)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8, ),C(0, ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
3. (08浙江温州)如图,在 中, , , , 分别是边 的中点,点 从点 出发沿 方向运动,过点 作 于 ,过点 作 交 于
,当点 与点 重合时,点 停止运动.设 , .
(1)求点 到 的距离 的长;
(2)求 关于 的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点 ,使 为等腰三角形?若存在,请求出所有满足要求的 的值;若不存在,请说明理由.
4.(08山东省日照市)在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN‖BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
5、(2007浙江金华)如图1,已知双曲线y= (k>0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为 ;若点A的横坐标为m,则点B的坐标可表示为 ;
(2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由.
6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点( ,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于 ,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
7.(2008浙江义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (a b,k 0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.
(3)在第(2)题图5中,连结 、 ,且a=3,b=2,k= ,求 的值.
8. (2008浙江义乌)如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与 轴负半轴上.过点B、C作直线 .将直线 平移,平移后的直线 与 轴交于点D,与 轴交于点E.
(1)将直线 向右平移,设平移距离CD为 (t 0),直角梯形OABC被直线 扫过的面积(图中阴影部份)为 , 关于 的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
①求梯形上底AB的长及直角梯形OABC的面积;
②当 时,求S关于 的函数解析式;
(2)在第(1)题的条件下,当直线 向左或向右平移时(包括 与直线BC重合),在直线AB上是否存在点P,使 为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
9.(2008山东烟台)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.
10.(2008山东烟台)如图,抛物线 交 轴于A、B两点,交 轴于M点.抛物线 向右平移2个单位后得到抛物线 , 交 轴于C、D两点.
(1)求抛物线 对应的函数表达式;
(2)抛物线 或 在 轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线 上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线 上,请说明理由.
11.2008淅江宁波)2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.
(1)求A地经杭州湾跨海大桥到宁波港的路程.
(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?
(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?
12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸的短边长为 .
(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步 将矩形的短边 与长边 对齐折叠,点 落在 上的点 处,铺平后得折痕 ;
第二步 将长边 与折痕 对齐折叠,点 正好与点 重合,铺平后得折痕 .
则 的值是 , 的长分别是 , .
(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.
(3)如图3,由8个大小相等的小正方形构成“ ”型图案,它的四个顶点 分别在“16开”纸的边 上,求 的长.
(4)已知梯形 中, , , ,且四个顶点 都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.
13.(2008山东威海)如图,在梯形ABCD中,AB‖CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN‖AB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值.
(3)试判断四边形MEFN能否为正方形,若能,
求出正方形MEFN的面积;若不能,请说明理由.
14.(2008山东威海)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数 的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,
以点A,B,M,N为顶点的四边形是平行四边形,
试求直线MN的函数表达式.
(3)选做题:在平面直角坐标系中,点P的坐标
为(5,0),点Q的坐标为(0,3),把线段PQ向右平
移4个单位,然后再向上平移2个单位,得到线段P1Q1,
则点P1的坐标为 ,点Q1的坐标为 .
15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
16.(2008年浙江省绍兴市)将一矩形纸片 放在平面直角坐标系中, , , .动点 从点 出发以每秒1个单位长的速度沿 向终点 运动,运动 秒时,动点 从点 出发以相等的速度沿 向终点 运动.当其中一点到达终点时,另一点也停止运动.设点 的运动时间为 (秒).
(1)用含 的代数式表示 ;
(2)当 时,如图1,将 沿 翻折,点 恰好落在 边上的点 处,求点 的坐标;
(4) 连结 ,将 沿 翻折,得到 ,如图2.问: 与 能否平行? 与
能否垂直?若能,求出相应的 值;若不能,说明理由.
17.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过 三点.
(1)求过 三点抛物线的解析式并求出顶点 的坐标;
(2)在抛物线上是否存在点 ,使 为直角三角形,若存在,直接写出 点坐标;若不存在,请说明理由;
(3)试探究在直线 上是否存在一点 ,使得 的周长最小,若存在,求出 点的坐标;若不存在,请说明理由.
18.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形 的边 在 轴的负半轴上,边 在 轴的正半轴上,且 , ,矩形 绕点 按顺时针方向旋转 后得到矩形 .点 的对应点为点 ,点 的对应点为点 ,点 的对应点为点 ,抛物线 过点 .
(1)判断点 是否在 轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在 轴的上方是否存在点 ,点 ,使以点 为顶点的平行四边形的面积是矩形 面积的2倍,且点 在抛物线上,若存在,请求出点 ,点 的坐标;若不存在,请说明理由.
19.(2008年四川省巴中市) 已知:如图14,抛物线 与 轴交于点 ,点 ,与直线 相交于点 ,点 ,直线 与 轴交于点 .
(1)写出直线 的解析式.
(2)求 的面积.
(3)若点 在线段 上以每秒1个单位长度的速度从 向 运动(不与 重合),同时,点 在射线 上以每秒2个单位长度的速度从 向 运动.设运动时间为 秒,请写出 的面积 与 的函数关系式,并求出点 运动多少时间时, 的面积最大,最大面积是多少?
20.(2008年成都市)如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且 =3 ,sin∠OAB= .
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为 ,△QNR的面积 ,求 ∶ 的值
没图,不好回答
1、因为角PAB=CDP=BPC,角APB=PBC=DCP,角ABP=PCB=DPC
因此三角形ABP与PCB与DPC相似。
设PA=x,则x/2=2/(5-x),解得:x=1或4.故AP长为1或4(对称的,如果有图,也可以舍去一个)
2、
(1)
同理三角形APB相似PEB相似DPQ,故x/2=(2+y)/(5-x),即y=-x^2/2+5/2*x-2,0
1
分类讨论题
分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要注意分类讨论的:
1.熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2.讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3.图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4.代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5.考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6.函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7.由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
2
四个秘诀
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
3
答题技巧
定位准确防止 “捡芝麻丢西瓜”
在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
解数学压轴题做一问是一问
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
4
压轴题技巧
纵观全国各地的中考数学试卷,数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。
函数型综合题
是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:
①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;
②反比例函数,它所对应的图像是双曲线;
③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题
先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:
在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
在解数学综合题时要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
不管是初中高中,你基础掌握的好什么题都难不倒你,比方说1加到10,别人用数列做,你不会,你就一个一个加也能做出来。有些题目看上去无从下手,你可以用特殊值带入看看。我觉得除了图形题需要加辅助线的,其他的题目都是不难的。那些复杂的公式我重来不背的,小学到初中数学考试期中期末都是满分。多做题目多打基础才是王道。不会的多问问吧
关于 上海中考数学经常考的压轴题类型是什么 和 急求2011各地数学中考压轴题题目 的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 上海中考数学经常考的压轴题类型是什么 的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于 急求2011各地数学中考压轴题题目 、 上海中考数学经常考的压轴题类型是什么 的信息别忘了在本站进行查找喔。